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Chapter 10

Quantitative Analysis of Photobodies

Chan Yul Yoo, Desiree Williams, and Meng Chen

Abstract

Photobodies are membraneless subnuclear organelles that contain the red and far-red photoreceptors, 
phytochromes. Photobody biogenesis has been postulated to play important roles in early light signaling 
events. The size and number of photobodies are highly dynamic in response to the quality and quantity of 
light and correlated tightly with phytochrome-mediated seedling morphogenesis. Here, we provide a 
detailed protocol for characterization of the three-dimensional morphology of photobodies, including 
sample preparation, fluorescence microscopy, and image analysis. Although this method was developed 
initially for characterizing photobodies, it can be adopted to analyze other membraneless or membrane-
bound subcellular organelles.
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1  Introduction

Photobodies are membraneless photoreceptor-containing, light-
sensory subnuclear domains in plants [1]. In Arabidopsis, photo-
bodies contain the red and far-red light photoreceptors 
phytochrome A to E (phyA-E) [2, 3], the blue light photoreceptor 
CRY2 (cryptochrome 2) and possibly CRY1 [4–9], the UV-B 
receptor UVR8 (UV RESISTANCE LOCUS 8) [10], and a bat-
tery of light signaling components [11]. Although the interactions 
among the photoreceptors on photobodies have not been system-
atically investigated, the dynamic changes in photobody morphol-
ogy have been well studied using Arabidopsis transgenic lines 
expressing fluorescent protein-tagged phytochrome B (phyB)—a 
photostable and the most prominent phytochrome in the light [2, 
12, 13]. Phytochromes are bilin-containing proteins that exist in 
two relatively stable and photoconvertible forms, a red light-
absorbing biologically inactive Pr form and a far-red light-absorbing 
biologically active Pfr form [14, 15]. Besides photoconversion, 
Pfr can also thermodynamically convert back to Pr in a process 
called dark reversion or thermoreversion; because the rate of 
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thermoreversion of phyB is accelerated with an increase in tem-
perature, phyB is also considered a thermosensor [16, 17]. One of 
the earliest light responses at the cellular level is the translocation 
of photoactivated phytochromes from the cytoplasm to the nucleus 
and their subsequent localization to photobodies [1, 2, 12]. The 
biogenesis of photobodies is promoted by the Pfr form of phyB 
and therefore is highly dynamic in response to changes in light 
quality and quantity as well as temperature [13, 17, 18].

The steady-state patterns of phyB-FP photobodies correlate 
with early light signaling events as well as downstream phytochrome-
mediated morphological responses. Formation of a few large phyB-
FP photobodies with diameters between 1 and 2 μm under high 
intensity of red light correlates with degradation of the hypocotyl 
growth-promoting transcription factor PIF3 (PHYTOCHROME-
INTERACTING FACTOR 3) and phyB-mediated inhibition of 
hypocotyl growth [13, 19–21]. By contrast, disassembly of large 
phyB-FP photobodies into tens to hundreds of small photobodies 
by inactivation of phyB or in mutants of phyB signaling correlates 
with the accumulation of PIF3 and promotion of hypocotyl growth 
[18, 19, 22–24]. These results, combined with the data that PIF3 
is localized to photobodies before its degradation during the dark-
to-light transition [25, 26], support the model that photobodies 
play important roles in PIF3 degradation and PIF3-dependent 
regulation of light-responsive genes [23]. Similarly, the dynamics 
of phyB photobodies is also associated with the hypocotyl response 
to changes in temperature [17]. Taken together, although the pre-
cise function of photobodies is still poorly understood, the steady-
state pattern of photobodies can be used as a readout for early light 
signaling events and even genetic screens to identify components 
involved in early steps of phytochrome signaling [13, 19, 21].

The dynamic nature of photobodies presents two major chal-
lenges in characterization of photobody morphology. The first 
challenge is that exposure of living plant cells to the excitation light 
for FPs in fluorescence or confocal microscopy will alter the steady-
state pattern of photobodies, and therefore, introduce experimen-
tal errors into photobody characterization. Based on our experience, 
this is particularly true for plant materials grown in the dark or dim 
light, as the strong excitation light (e.g., 488 nm excitation light 
for GFP) will promote rapid formation of small photobodies. The 
second challenge lies in the difficulty to quantitatively measure the 
number and volume of various sized photobodies. Here we 
describe an improved photobody characterization protocol that 
circumvents these obstacles by fixing plant materials without dena-
turing the fluorescent protein and analyzing the three-dimensional 
morphology of photobodies using Huygens Essential software. 
This method has been applied to characterize photobodies under a 
variety of light conditions in both wild-type and mutant back-
grounds [21, 22, 24].
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2  Materials

	 1.	 PBG (phyB-GFP), Arabidopsis transgenic line expressing 
phyB-GFP in phyB-5 background [2].

	 2.	 ½ Murashige and Skoog (½ MS) with Gamborg’s vitamins 
(Caisson Labs, MSP06) and 0.8% phyto agar.

	 3.	 LED chamber (Percival Scientific, Perry, IA).
	 4.	 Spectroradiometer (model PS-200, Apogee Instruments Inc., 

Logan, UT).

	 1.	 1% (v/v) paraformaldehyde (Electron Microscopy Sciences, 
15710) (see Note 1).

	 2.	 50 mM NH4Cl in PBS.
	 3.	 0.2% (v/v) Triton X-100 in PBS.
	 4.	 300 nM DAPI in PBS.
	 5.	 ProLong Diamond Antifade Mountant (Thermo Fisher 

Scientific, P36965).
	 6.	 Superfrost Plus Micro Slide.
	 7.	 Micro cover glasses, rectangular, 22 × 40 mm, No. 1.5.

	 1.	 Confocal microscope or fluorescence microscope with decon-
volution software (see Note 2).

	 2.	 Huygens Essential software (Scientific Volume Imaging, 
The Netherlands).

3  Methods

	 1.	 Sterilize PBG seeds and sow on ½ MS plate.
	 2.	 Stratify the seeds in the dark at 4 °C for 5 days.
	 3.	 Grow PBG seedlings under monochromatic 10 μmol m−2 s−1 

red light at 21 °C for 4 days (see Note 3) or adjust the light/
temperature conditions according to your specific 
experiments.

	 1.	 Fix seedlings with 1% paraformaldehyde in PBS under vacuum 
for 10 min under the respective growth conditions (see Note 4).

	 2.	 Wash seedlings 3× with 50 mM NH4Cl in PBS for 5 min each 
to quench the residual amount of fixative.

	 3.	 Permeabilize seedlings with 0.2% Triton X-100  in PBS for 
5 min.

	 4.	 Stain nuclei with 300 nM DAPI in PBS for 10 min.
	 5.	 Wash seedlings 3× with PBS for 5 min each (see Note 5).

2.1  Plant Materials, 
Plant Growth Supplies, 
and Equipment

2.2  Reagents

2.3  Imaging 
and Image Analysis

3.1  Preparation 
of Plant Materials

3.2  Fixation 
and Mounting
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	 6.	 Mount a few seedlings in ProLong Diamond Antifade on a 
slide with a coverslip and incubate overnight in the dark to 
cure the sample (see Note 6).

	 7.	 Seal the edges of the coverslip with nail polish. The slide 
can be imaged immediately or stored at 4 °C in the dark (see 
Note 7).

	 1.	 Select a specific cell type to characterize photobody mor-
phology. We found that the morphology of photobodies var-
ies dramatically in different cell types and even in the same cell 
type under different modes of growth. To demonstrate a cor-
relation between photobody biogenesis and the regulation of 
hypocotyl growth by light, In our previous studies we have 
focused on the epidermal cells in the upper one third of the 
hypocotyl [13, 19, 21, 22], because these cells are in the grow-
ing zone along the hypocotyl on the fourth day after germina-
tion when the seedlings are imaged [27, 28].

	 2.	 PhyB-GFP photobodies can be imaged with either a confocal 
microscope or a fluorescence microscope with a 63× or 100× 
oil immersion objective (see Note 8). Three-dimensional 
image stacks of individual nuclei containing photobodies are 
acquired. For confocal microscopy, we take optical sections 
with a Z step of 0.70 μm. For fluorescence microscopy, we 
take optical sections with a Z step of 0.24 μm. For statistical 
analysis, we collect photobody images from at least 50 nuclei 
from three biological replicates.

	 3.	 Load image stacks into Huygens Essential. Three-dimensional 
stacks taken by a fluorescence microscope can be deconvolved 
by Huygens Essential software or other deconvolution soft-
ware before imported into Huygens Essential.

	 4.	 Analyze the number and volume of photobodies using Object 
Analyzer (Fig. 1). The threshold and seeds are set as default 
(see Note 9).

	 5.	 Export the data and calculate the number of large or small 
photobodies for each nuclei using Excel (see Note 10).

4  Notes

	 1.	 This paraformaldehyde solution is methanol-free, which is 
important to prevent the fluorescent protein from denatur-
ation during fixation [29].

	 2.	 We used a Zeiss LSM510 inverted confocal microscope 
equipped with a Plan-Apochromat 100×/1.4 Oil DIC objec-
tive and a Zeiss Axio Observer Z1 inverted fluorescence 
microscope equipped with a Plan-Apochromat 100×/1.4 Oil 

3.3  Fluorescence 
Imaging 
and Photobody 
Quantification
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DIC objective and an Axiocam 506 mono CCD camera (Carl 
Zeiss, Thornwood, NY).

	 3.	 This is the standard condition where phyB-GFP is localized to 
only large photobodies [13]. When characterizing a new light 
signaling mutant in the PBG background, we look at its steady-
state photobody morphology under this condition first, and 
then alter either the light intensity or the temperature.

Fig. 1 Quantitative analysis of photobody morphology. Photobodies were ana-
lyzed in nuclei of epidermal cells in the upper 1/3 region of hypocotyls of 4-day-
old PBG seedlings grown under 10 μmol m−2 s−1 red light. Three-dimensional 
image stacks of individual nuclei were acquired at room temperature with a 
Zeiss Axio Observer Z1 fluorescence microscope equipped with a Plan-
Apochromat 100×/1.4 Oil DIC objective and an Axiocam 506 mono CCD camera 
(Carl Zeiss, Thornwood, NY). Filters used for GFP were exciter, 470/40 nm/nm; 
emitter, 525/50 nm/nm; and FT 495 nm beamsplitter (Zeiss Filter Set 38 HE). 
Filters used for DAPI were exciter, G 365 nm; emitter, 445/50 nm/nm; FT 395 
beamsplitter (Zeiss Filter Set 49). The image stacks of nuclei with a Z step size 
of 0.24 μm were subjected to Quick Maximum Likelihood Estimation deconvolu-
tion by using Huygens Essential software (Scientific Volume Imaging) on a HP 
Z840 Workstation (HP, Palo Alto, CA) (a) Representative maximum projection 
image of a DAPI-stained (red) nucleus with photobodies (green). Scale bar equals 
to 5 μm (b) Three-dimensional image of the nucleus shown in (a) reconstructed 
by using Huygens Essential Object Analyzer (c, d) Box and whisker plots showing 
the number (c) and volume (d) of the photobodies described above. The boxes 
represent from 25th to 75th percentile; the bars equal to the median values. The 
data were from total 66 nuclei
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	 4.	 We fix seedlings in their growth condition to minimize poten-
tial changes in photobody morphology during fixation. Do 
not fix samples on ice because temperature may affect the 
morphology of photobodies.

	 5.	 Seedlings can be stored in PBS at 4 °C. We normally mount 
and image the seedlings within a week.

	 6.	 Seedlings can also be mounted with PBS for imaging. However, 
ProLong Diamond Antifade is recommended to reduce 
photobleaching.

	 7.	 The fluorescent signal may decrease slowly at 4 °C over time. 
Therefore, we usually image photobodies within a week after 
fixation.

	 8.	 Either a confocal microscope or a fluorescence microscope can 
be used for imaging nuclei of epidermal cells. However, a con-
focal microscope is recommended for imaging nuclei of inner 
cells.

	 9.	 Threshold and seeds are automatically calculated from the 
image. Do not change threshold and seeds, which will affect 
the size of photobodies.

	10.	 PhyB-GFP is localized only to large photobodies under 
10 μmol m−2 s−1 red light. We therefore define large photo-
bodies based on the volumes of photobodies under 
10 μmol m−2 s−1 red light.
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